Study of structure and properties of ZnO-Bi₂O₃-P₂O₅ glasses

Josef Jirák · Ladislav Koudelka · Jaroslav Pospíšil · Petr Mošner · Lionel Montagne · Laurent Delevoye

Received: 27 February 2007/Accepted: 14 May 2007/Published online: 10 July 2007 © Springer Science+Business Media, LLC 2007

Abstract Glasses of the ternary system ZnO-Bi₂O₃-P₂O₅ were prepared and studied in two compositional series $50ZnO-xBi_2O_3-(50-x)P_2O_5$ and (50-y)ZnOyBi₂O₃-50P₂O₅. Two distinct glass-forming regions were found in the 50ZnO-xBi₂O₃-(50 - x)P₂O₅ glass series with x = 0-10 and 20-35 mol.% Bi₂O₃. All prepared Bi₂O₃containing glasses reveal a high chemical durability. Small additions of Bi₂O₃ (~5 mol.%) improve thermal stability of glasses. All glasses crystallize on heating within the temperature range of 505-583 °C. Structural studies by Raman and ³¹P MAS NMR spectroscopies showed the rapid depolymerisation of phosphate chains within the first region with x = 0-15 and the presence of isolated Q^0 phosphate units within the second region with x = 20-35. Raman studies showed that bismuth is incorporated in the glass structure in BiO₆ units and their vibrational bands were observed within the spectral region of $350-700 \text{ cm}^{-1}$. The evolution of properties and the spectroscopic data are both in accordance with a network former effect of Bi₂O₃.

J. Jirák · L. Koudelka (\boxtimes) · J. Pospíšil · P. Mošner

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic e-mail: ladislav.koudelka@upce.cz

L. Montagne · L. Delevoye

Introduction

Phosphorus pentoxide P₂O₅ is known as one of the glass forming oxides. It is able to form glasses also when mixed with considerable quantities of other oxides. Phosphate glasses reveal a low chemical durability, which can be increased by the addition of oxides of trivalent metal cations like Al₂O₃, Fe₂O₃, or B₂O₃ [1, 2]. Also the role of another trivalent oxide Bi₂O₃ in phosphate glasses was investigated in several previous papers [2-15]. These studies were devoted mainly to potassium and sodiumphosphate based glasses [3–14]. Peng and Day [2] studied thermal expansion and chemical durability of K₂O-B₂O₃-P₂O₅ glasses. Montagne et al. [3] studied the structure of ternary glasses of the Na₂O-Bi₂O₃-P₂O₅ system by ³¹P MAS NMR and infrared spectroscopies, whereas Shaim and Et-Tabirou [4] investigated some physical properties and electrical conductivity of the series of sodium phosphate with 40 mol.% P₂O₅ and with 0–25 mol.% Bi₂O₃. Recently Daviero et al. [5] investigated structural role of Bi³⁺ in Na₂O-Bi₂O₃-P₂O₅ glasses by EXAFS, XANES and ³¹P DO MAS-NMR spectroscopy and found two distinct oxygen shells in the Bi³⁺ environment and a mixed network-former effect of Bi₂O₃ in these glasses. The effect of Al₂O₃ substitution by Bi₂O₃ in the quaternary glasses of the Na₂O-Bi₂O₃-Al₂O₃-P₂O₅ system was studied in [6], where the authors concluded that Bi³⁺ exhibits the same structural role in the glass network as Al³⁺ and also improves chemical durability of sodium phosphate glasses. Ahaman et al. [7] studied glass-formation in the system Na₃PO₄-Pb₃(PO₄)₂-P₂O₅ and dielectric properties of glasses of this system.

Structural role of TiO_2 and Bi_2O_3 in $Na_2O-Bi_2O_3-TiO_2-P_2O_5$ glasses was investigated in [8–11]. The authors of [8, 9] came to the conclusion that the incorporation of

Unité de Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, Ecole Nationale Superieure de Chimie de Lille, BP108, 59652 Villeneuve d'Ascq cedex, France

BiO₆ and TiO₆ octahedra into the glass structure results in the depolymerisation of phosphate chains and in the glasses with the lowest Bi₂O₃ content pyrophosphate groups are prevailing, whereas in Bi₂O₃-rich glasses orthophosphate groups become predominant structural units. Ionic conductivity of Na₂O–Bi₂O₃–TiO₂–P₂O₅ glasses decreases with increasing concentration of either Bi₂O₃ or TiO₂ [10], whereas their chemical durability increases. According to the results of ³¹P DQ MAS NMR spectra of these glasses [11] the substitution of TiO₂ for Bi₂O₃ increases the Q² fraction of phosphate units, i.e., results in the repolymerisation of the phosphate network [11] which is accompanied by an increase of glass transition temperature.

The investigation of Na₂O–CuO–Bi₂O₃–P₂O₅ quaternary glasses reported in [12–14] showed that additions of CuO or Bi₂O₃ increase glass transition temperature and depolymerize phosphate chains [12, 13]. According to [14] Bi₂O₃ in these glasses behaves as a network former and is incorporated in the network as BiO₆ units.

Glass formation in the ZnO– Bi_2O_3 – P_2O_5 system was reported by Elouadi et al. [15]. The authors [15] determined glass-forming region in this ternary system. There has not been any report on the properties of glasses in this system. Therefore, the aim of this work is the preparation and study of physical and thermal properties and also investigation of structure of glasses from the system ZnO– Bi_2O_3 – P_2O_5 .

Experimental

Glasses of the ZnO–Bi₂O₃–P₂O₅ system were prepared in the batches of 25 g by the reaction of ZnO, Bi₂O₃ and H₃PO₄ and slow heating the reaction mixture up to 600 °C to remove water from the reaction mixture and then melted up to 1,050–1,200 °C in high-purity alumina crucibles. After 20 min reaction and mixing at this temperature, the obtained melt was cooled by pouring into a graphite mould of 30 × 30 mm dimensions to form a suitable glass block or quenched between two copper blocks. The obtained glasses were separately annealed for 15 min at a temperature about their T_g and then slowly cooled to the room temperature.

The glass density, ρ , was determined at bulk samples by the Archimedes method using CCl₄ as the immersion liquid. The molar volume $V_{\rm M}$ was calculated as $V_{\rm M} = \overline{M}/\rho$, where \overline{M} is the average molar weight of the glass composition xZnO-yBi₂O₃-zP₂O₅ calculated for x + y + z = 1.

Thermal behaviour of the glasses was studied with the Netzsch 404 PC, working in the temperature range of 30-1,100 °C at a scan rate of 10 °C/min in the DSC mode. The measurement was done on powder samples with mean diameter 8–10 µm placed in silica crucibles.

The Raman spectra were measured on bulk samples at room temperature on a FT IR spectrometer, Bruker model IFS 55, with the Raman attachment, FRA 106. The Raman spectra were recorded under excitation with a Nd:YAG laser radiation using a slit width of 4 cm⁻¹ with the power of 300 mW at the sample surface.

 31 P MAS NMR spectra were measured on a BRUKER Avance 400 spectrometer with a 4 mm probe. The spinning speed was 12.5 kHz. The pulse length was 1.2 µs (pi/4), and the recycle delay was 60 s which was sufficient to enable relaxation at this field strength. The Larmor frequency was 162.3 MHz. The chemical shifts of 31 P nuclei are given relative to 85% H₃PO₄ at 0 ppm.

Results and discussion

Two compositional series of zinc bismuthate–phosphate glasses $50ZnO-xBi_2O_3-(50 - x)P_2O_5$ and $(50 - y)ZnO-yBi_2O_3-50P_2O_5$ were synthesized and studied. Both compositional series are shown in the ternary phase diagram (see Fig. 1) together with glass-forming region determined by Elouadi [12]. In the first glass series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$ the samples with x = 0, 5 and 25-35 mol.% Bi_2O_3 were prepared by slow cooling, whereas the glasses with x = 10 and 20 mol.% Bi_2O_3 were prepared by quenching between copper blocks. The sample with x = 15 mol.% Bi_2O_3 was crystalline even when quenching was used. The O/P ratio in this sample is 3.85, i.e., close to the orthophosphate composition. X-ray diffraction analysis revealed that the sample contains crystalline phases BiPO_4 and Zn_2P_2O_7.

Thus according to our results the glass-forming region in the compositional series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$ is

Fig. 1 Ternary phase diagram of the glass system ZnO-Bi₂O₃-P₂O₅

split into two regions: the first one at a low Bi₂O₃ content $(0-10 \text{ mol.}\% \text{ Bi}_2\text{O}_3)$ and the second one at a higher Bi_2O_3 content (20-35 mol.% Bi₂O₃). In the second glass series $(50 - y)ZnO-yBi_2O_3-50P_2O_5$ homogeneous glasses with v = 0 and 5 mol.% Bi₂O₃ were obtained by slow cooling of the melt, whereas the glasses with $y = 10-20 \text{ mol.}\% \text{ Bi}_2\text{O}_3$ were prepared by quenching between copper blocks. All the prepared glasses were transparent and homogeneous. Glasses of the series $(50 - y)ZnO-yBi_2O_3-50P_2O_5$ with a higher content of Bi₂O₃ were slightly yellowish, glasses of the series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$ with a high Bi_2O_3 content had an orange-red up to brownish colour. The chemical analysis showed that Al₂O₃ content in the glasses was less than 1.5 mol.%, which could bring only small changes in the glass properties as shown in Na₂O-Bi₂O₃-Al₂O₃–P₂O₅ glasses [5].

The values of the glass density, ρ , for both series of glasses are shown in Table 1. The density values of the studied glasses increase with increasing bismuth oxide content in both glass series, but the slope in ρ is higher in the series 50ZnO–*x*Bi₂O₃–(50 – *x*)P₂O₅. The observed increase in ρ is monotonous at both compositional series. The reason for this increase in ρ is the addition of heavy metal oxide Bi₂O₃ replacing lighter oxides P₂O₅ in the first compositional series with 50 mol.% ZnO or ZnO in the second compositional series (50 – *y*)ZnO–*y*Bi₂O₃–50P₂O₅.

The molar volume values, $V_{\rm M}$ (Table 1), in (50 - y)ZnO-yBi₂O₃-50P₂O₅ glasses increase almost linearly with increasing Bi₂O₃ content, whereas in the compositional series 50ZnO-xBi₂O₃-(50 - x)P₂O₅ the values of $V_{\rm M}$ slightly decrease within the compositional region x = 0-10 mol.% Bi₂O₃, while within the compositional range 20– 35 mol.% Bi₂O₃ the values of $V_{\rm M}$ remain almost unchanged.

Chemical durability of Bi₂O₃-containing glasses is very high. No measurable mass loss was detected at room

temperature even after the immersion of glass samples for 1 month in the distilled water. The measurement of dissolution rate in boiling water for 5 h gave the values from 3×10^{-4} g cm⁻² min⁻¹ for the sample 50ZnO-5Bi₂O₃-45P₂O₅ up to 1×10^{-7} g cm⁻² min⁻¹ for the sample 50ZnO-30Bi₂O₃-20P₂O₅ for the first glass series and $2-5 \times 10^{-4}$ g cm⁻² min⁻¹ for the glasses of the second series.

The DSC curves of the glass series $50\text{ZnO}-x\text{Bi}_2\text{O}_3-(50 - x)\text{P}_2\text{O}_5$ are shown in Fig. 2. The values of glass transition temperature, T_g , of these glasses (see Table 1) are different in the region with a low and a high Bi₂O₃ content. Within the first compositional region of 0–10 mol.% Bi₂O₃ the values of T_g slightly increase from 397 to 427 °C and within the second compositional region the T_g values are substantially higher and decrease from 479 to 447 °C at the sample with 35 mol.% Bi₂O₃. T_g values for glasses from compositional series (50 – y)ZnO– yBi₂O₃–50P₂O₅ show a slight increase in T_g in the region of 0–10 mol.% Bi₂O₃ and than T_g slightly decreases (Table 1).

All glasses in the $50\text{ZnO}-x\text{Bi}_2\text{O}_3-(50 - x)\text{P}_2\text{O}_5$ compositional series crystallize on heating within the temperature region of 511-610 °C. The DSC curves of the glass series $(50 - y)\text{ZnO}-y\text{Bi}_2\text{O}_3-50\text{P}_2\text{O}_5$ (not shown here) showed that all glasses of this series crystallize on heating in the temperature region of 510-632 °C.

Thermal stability of glasses was evaluated in a first approximation from the values of $T_c - T_g$ (see Table 1). The highest values of $T_c - T_g$ were obtained in both series for the glasses containing 5 mol.% Bi₂O₃, i.e., their thermal stability is the highest of all studied glasses. With further increase in Bi₂O₃ content the difference of $T_c - T_g$ decreases in both glass series showing on the decreasing thermal stability of these glasses.

³¹P MAS NMR spectra of four samples of the glass series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$ are shown in Fig. 3

ZnO (mol.%)	Bi ₂ O ₃ (mol.%)	P ₂ O ₅ (mol.%)	$\rho \pm 0.05$ (g cm ⁻³)	$V_{\rm M}$ (cm ³)	$T_{\rm g} \pm 3$ (°C)	$T_{\rm c} \pm 2$ (°C)	$\frac{T_{\rm c} - T_{\rm g}}{(^{\circ}{\rm C})}$
50	0	50	2.85	39.2	397	531	134
50	5	45	3.50	36.5	406	583	177
50	10	40	4.19	34.4	427	510	83
50	20	30	5.27	33.5	479	564	85
50	25	25	5.90	32.7	467	550	83
50	30	20	6.33	33.0	468	530	62
50	35	15	6.80	33.1	447	528	81
50	0	50	2.85	39.2	397	531	134
45	5	50	3.30	39.7	407	550	143
40	10	50	3.66	41.0	427	565	138
35	15	50	4.09	41.4	423	531	108
30	20	50	4.41	42.8	422	505	83

Table 1Density, molarvolume and glass transitiontemperature of ZnO-Bi2O3-P2O5 glasses

Fig. 2 DSC curves of the glass series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$

and three samples of the glass series $(50 - y)ZnO-yBi_2O_3-$ 50P₂O₅ are shown in Fig. 4. These spectra reveal distinct signals of Q², Q¹ and Q⁰ phosphate groups according to the Van Wazer notation [16], the positions of which are very distinctively separated. Therefore, we have decomposed MAS NMR spectra by the line shape simulation and the results are collected in Table 2.

The spectrum of the metaphosphate glass is dominated by an isotropic peak at -31 ppm (Fig. 3), characteristic of Q^2 units with a very small shoulder at -13.4 ppm belonging to the about 2% of Q^1 groups terminating metaphosphate chains. Positions of both signals are in a good agreement with the studies of glassy Zn(PO₃)₂ by Brow et al. [17] and Wiench et al. [18]. The MAS spectrum of the sample 50ZnO-10Bi₂O₃-40P₂O₅ from the series 50ZnO-*x*Bi₂O₃-(50 - *x*)P₂O₅ is dominated by the signal of Q^1 units, with smaller amounts of Q^2 and Q^0 units, whereas the spectra of glasses containing 20 and 30 mol.% Bi₂O₃ reveal dominating signal of Q^0 units showing on the presence of isolated orthophosphate units in these glasses.

³¹P MAS NMR spectra of glass series (50 - y)ZnO– yBi₂O₃–50P₂O₅ (Fig. 4) show also the depolymerisation of phosphate chains, but in this case the transformation of Q² units into Q¹ units is slower as the ratio Bi₂O₃/P₂O₅ increases not so rapidly as in the previous series. The number of diphosphate units increases steadily with increasing Bi₂O₃ content and in the 30ZnO–20Bi₂O₃– 50P₂O₅ glass Q¹ units are dominating. The value of

Fig. 3 ³¹P MAS NMR spectra of the glass series 50ZnO–xBi₂O₃–(50 - x)P₂O₅

Fig. 4 ^{31}P MAS NMR spectra of the glass series (50 – y)ZnO– yBi_2O_3–50P_2O_5

ZnO	Bi ₂ O ₃	P_2O_5	Q ²		Q ¹		Q ⁰	
(mol.%)			(ppm)	Area (% ±2)	(ppm)	Area (% ±2)	(ppm)	Area (% ±2)
50	_	50	-31.0	98.2	-13.4	1.8	_	_
50	10	40	-25.9	16.4	-12.1	71.1	+1.5	12.5
50	20	30	_	_	-10.7	9.0	-0.4	91.0
50	30	20	_	_	-9.2	6.3	+0.4	93.7
50	-	50	-31.0	98.2	-13.4	1.8	_	_
40	10	50	-28.9	61.9	-13.4	37.2	-1.4	0.9
30	20	50	-25.9	27.9	-13.3	63.3	-1.7	8.8

Table 2 Chemical shifts and relative peak areas of ³¹P MAS NMR spectra of ZnO-Bi₂O₃-P₂O₅ glasses

chemical shift of Q^2 units shifts downfield probably due to an increasing number of P–O–Bi bonds in the glass.

The Raman spectra of the glass series $50\text{ZnO}-x\text{Bi}_2\text{O}_3-(50 - x)\text{P}_2\text{O}_5$ are shown in Fig. 5. In the high-frequency region on the Raman spectrum of the pure zinc meta-phosphate glass, there is one dominant very strong narrow band with the maximum at 1,205 cm⁻¹ ascribed according to [19] to the symmetrical stretching vibration of non-bridging oxygen atoms between metaphosphate (Q²) structural units. Its position is in agreement with the data

Fig. 5 Raman spectra of the glass series $50ZnO-xBi_2O_3-(50 - x)P_2O_5$

on Zn(PO₃)₂ by Nelson and Exarhos [20]. Another strong band at 704 cm⁻¹ is due to the symmetrical stretching vibration of bridging oxygen atoms between Q² groups [19]. With the replacement of P₂O₅ by Bi₂O₃ in the glasses with a low Bi₂O₃ content the maximum of this band shifts to lower frequencies up to 1,064 cm⁻¹ at the 50ZnO– 10Bi₂O₃–40P₂O₅ glass due to the depolymerisation of phosphate chains and the transformation of Q² units to Q¹ units. This change is also confirmed by the presence of the Raman band at 753 cm⁻¹, characteristic of symmetrical stretching vibration between diphosphate (Q¹) units [21], on the Raman spectrum of the glass with x = 10 mol.% Bi₂O₃.

In the second glass-forming region of $50\text{ZnO}-x\text{Bi}_2\text{O}_3-(50 - x)\text{P}_2\text{O}_5$ glass series with x = 20-35 mol.% Raman spectra contain one dominating band in the high-frequency region the position of which shifts only slightly towards shorter wavelength from 972 to 956 cm⁻¹. The position of this band in the Bi-rich glasses is close to the values observed for isolated PO₄ (Q⁰) units in orthophosphates [22]. This assignment is in agreement with the results of NMR spectra (Fig. 3), which also revealed dominating role of Q⁰ units in these glasses. The slight shift of the Raman band from 972 to 956 cm⁻¹ reflects also the decrease in the content of Q¹ units (see Table 2).

New bands appear in the middle-frequency region of Raman spectra $(350-700 \text{ cm}^{-1})$ in this compositional region. As their relative intensity increases with increasing Bi₂O₃ content in comparison with the intensity of vibrational band of Q⁰ units, we assume that these bands are associated with the vibrations of Bi–O bonds. In the study of GeO₂–Bi₂O₃ glasses Baia et al. [23] considered that Bi³⁺ cations in these glasses are incorporated in the distorted BiO₆ octahedral groups. Similar coordination of Bi was considered in PbO–Bi₂O₃–Ga₂O₃ glasses [24] as well as in Na₂O–Bi₂O₃–CuO–P₂O₅ glasses [12]. A typical peak fitting of the Raman spectrum in the region of 350–700 cm⁻¹ is shown in Fig. 6. Two bands observed in the region of Bi–O bonds in distorted BiO₆ octahedra with

Fig. 6 Deconvolution of broad Raman bands within the wavelength region of $350-700 \text{ cm}^{-1}$ for the $50\text{ZnO}-25\text{Bi}_2\text{O}_3-50\text{P}_2\text{O}_5$ glass

the deformation vibrations of phosphate groups [13]. The bands observed within the region of 500–700 cm⁻¹ are assigned to Bi–O–Bi vibrations similar to PbO–Bi₂O₃– Ga₂O₃ glasses [24].

The Raman spectra of the glass series $(50 - y)ZnO-yBi_2O_3-50P_2O_5$ are shown in Fig. 7. With increasing Bi_2O_3 content the position of maximum of this dominant peak, which is assigned to stretching vibration of non-bridging oxygen atoms in Q² structural units, shifts to lower wavelength into the spectral region characteristic of stretching vibrations of non-bridging oxygen atoms on Q¹ units. This result is in full agreement with the changes in ³¹P MAS NMR spectra (Fig. 4), where the signal of Q² units decreases and the signal of Q¹ units increases with increasing Bi_2O_3 content. This is confirmed also by

Fig. 7 Raman spectra of the glass series $(50 - y)ZnO-yBi_2O_3-50P_2O_5$

changes in the shape of the Raman band of vibrations of bridging oxygen atoms between PO₄ units at 704-708 cm^{-1} , where increasing participation of Q¹ units with increasing Bi₂O₃ content broadens the band on its highfrequency side and the Raman band of O₃P-O-PO₃ vibrations is dominating on the Raman spectrum of 30ZnO-20Bi₂O₃-50P₂O₅ glass. On the Raman spectra of glasses containing 15 and 20 mol.% Bi₂O₂ a broad band of vibrations of Bi-O and Bi-O-Bi bonds can be also observed within the spectral region of 350-680 cm⁻¹ like in the previous glass series. As the Bi₂O₃ content in these glasses is lower than in the previous series, its intensity is lower and its deconvolution was not possible. Nevertheless, the depolymerisation of phosphate chains, observed in Raman and NMR spectra, reflects the incorporation of BiO₆ units into the structural network like in the first glass series.

Conclusions

The effect of Bi₂O₃ addition to Zn(PO₃)₂ glass was studied in two compositional series 50ZnO–*x*Bi₂O₃–(50 – *x*)P₂O₅ and (50 – *y*)ZnO–*y*Bi₂O₃–50P₂O₅. ³¹P MAS NMR spectra showed that the incorporation of Bi₂O₃ into the parent glass structure in 50ZnO–*x*Bi₂O₃–(50 – *x*)P₂O₅ results in the depolymerisation of metaphosphate chains, which is almost completed in the first series of glasses with *x* = 0– 15 mol.% Bi₂O₃, whereas within the compositional region of *x* = 20–35 mol.% Bi₂O₃ the presence of isolated orthophosphate tetrahedra in the glass structure was detected both from ³¹P NMR and Raman spectra. The incorporation of Bi₂O₃ in the form of BiO₆ octahedra into the glass structure was revealed from the Raman spectra by the presence of characteristic Raman bands of vibrations of Bi–O and Bi–O–Bi bonds.

Acknowledgements The Czech authors are grateful for the financial support from the research project No. 0021627501 of the Ministry of Education of Czech Republic and grant No. 104/07/0315 of Grant Agency of Czech Republic.

References

- 1. Ray NH (1978) Inorganic polymers. Academic Press, London
- 2. Peng YB, Day DE (1991) Glass Technol 32:166
- 3. Montagne L, Palavit G, Mairesse G (1996) Phys Chem Glasses 37:206
- 4. Shaim A, Et-Tabirou M (2003) Ann Chim Sci Mat 28:17
- Daviero S, Montagne L, Palavit G, Mairesse G, Belin S, Briois V (2003) J Phys Chem Solids 64:253
- Montagne L, Palavit G, Mairesse G, Draoui M, Aomari K, Saidi Idrissi M (1997) Phys Chem Glasses 38:15
- 7. Ahaman Z, Et-Tabirou M, Hafid M (1996) Phase Trans 56:247
- 8. Shaim A, Et-Tabirou M (2001) Phys Chem Glasses 42:381

- 9. Shaim A, Et-Tabirou M, Montagne L, Palavit G (2002) Phys Chem Glasses 37:2459
- 10. Shaim A, Et-Tabirou M, Montagne L, Palavit G (2003) Phys Chem Glasses 44:26
- 11. Montagne L, Daviero S, Palavit G, Shaim A, Et-Tabirou M (2003) Chem Mater 15:4709
- 12. Chahine A, Et-Tabirou M (2002) Mater Res Bull 37:1973
- Chahine A, Et-Tabirou M, Pascal JL (2004) Phys Chem Glasses 45:32
- 14. Chahine A, Et-Tabirou M, Pascal JL (2004) Mater Lett 58:2776
- 15. Elouadi B, Ouchetto M, Arbib ElH, Amraoui N (1988) Phase Trans 13:219
- 16. Van Wazer J (1951) Phosphorus and its compounds, vol 1 and 2. Interscience, New York

- Brow RK, Tallant DR, Myers ST, Phifer CC (1995) J Non-Cryst Solids 191:45
- Wiench JW, Pruski M, Tischendorf B, Otaigbe JU, Sales BC (2000) J Non-Cryst Solids 263/264:101
- 19. Bobovich YS (1962) Opt Spektrosk 13:492
- 20. Nelson BN, Exarhos GJ (1979) J Chem Phys 71:2739
- Fawcett V, Long AD, Taylor LH (1976) In: Schmid ED, Brandmueller J, Kiefer W (eds) Proc. Int. Conf. Raman Spectrosc., 5th edn. Hans Ferdinand Schulz Verlag, Freiburg, p 112
- 22. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, New York
- 23. Baia L, Simon S, Iliescu T, Kiefer W (2001) J Mol Struct 599:9
- 24. Kharlamov AA, Almeida RM, Heo J (1996) J Non-Cryst Solids 202:233